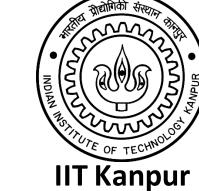
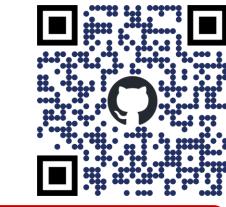
Deep Encoders with Auxiliary Parameters for Extreme Classification

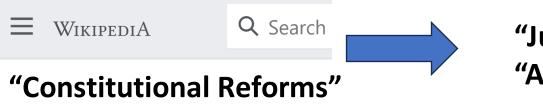
Kunal Dahiya, Sachin Yadav, Sushant Sondhi, Deepak Saini, Sonu Mehta, Jian Jiao, Sumeet Agarwal, Purushottam Kar, Manik Varma





Goal: Annotate a data point with the *most relevant* subset of labels from an extremely large set.

Extreme Classification (XC)



"Julius Caeser"
"Acta Senatus"

Applications

- Related web-page recommendation
- Matching user queries to advertiser keywords
- Product-to-product recommendation

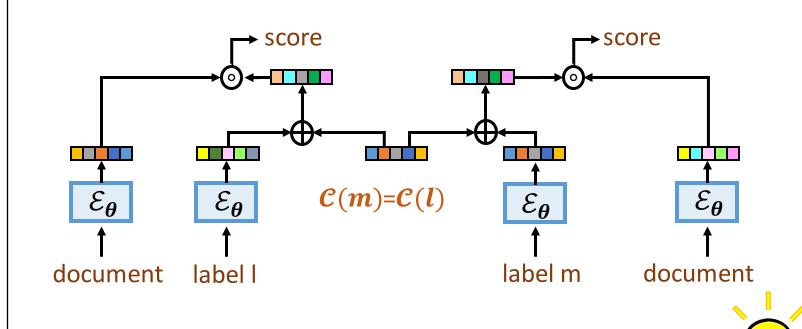
Semantic Gap in Siamese Networks

- Label text is unable to capture full meaning in case of short-text applications
- This leads to distortions in encoder training and sub-optimal accuracies
- Naïve solution to add L free vectors improve accuracies but does not scale

DEXA: Foundations

Dataset: $\{x_i, y_i\}_{i=1}^N, \{z_l\}_{l=1}^L y_i \in \{-1, 1\}^L$ where $x_i, z_l \in \mathcal{X}$ are doc/label text respectively

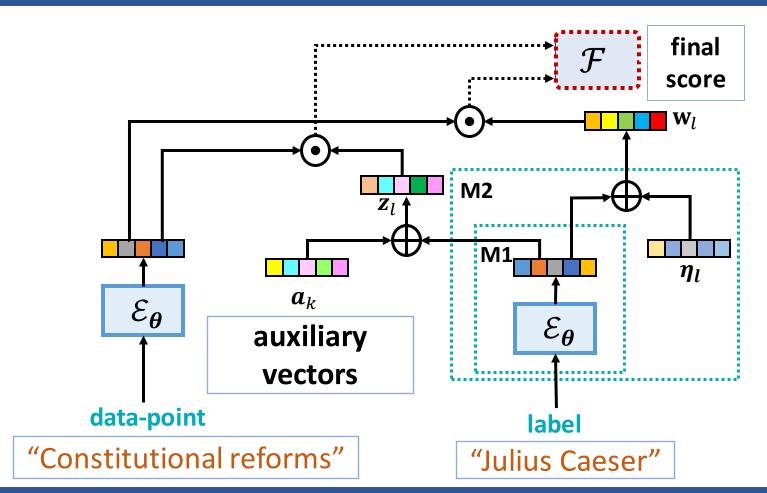
Goal: Learn params $\boldsymbol{\theta}$ for embedding architecture $\mathcal{E}_{\theta} \colon \boldsymbol{\mathcal{X}} \to \mathbb{R}^{D}$, One-vs.-All (OvA) classifiers $\boldsymbol{w}_{l} \in \mathbb{R}^{D}$, one for each label, to minimize triplet loss \mathcal{L} .



Related labels may have similar correction terms.

DEXA: Deep Encoders with Auxiliary Parameters for Extreme Classification

Architecture



Modular Training & Efficient Prediction

Module I (Encoder with Auxiliary Parameters):

- Cluster L labels into $K \ll L$ clusters
- Introduce K auxiliary parameters (a_k)
- Use $\mathcal{E}_{\theta}(\mathbf{z}_l) + \boldsymbol{a}_k$ as surrogate for \boldsymbol{w}_l and train embed. arch. $\widehat{\boldsymbol{\theta}}$ using a Siamese loss

Module II (Extreme Classifiers): Train η_l in $\mathcal{O}(ND \log L)$ time using +ve & hard –ve labels **Prediction:** Efficient procedure, taking $\mathcal{O}(D^2 + D \log L)$ time per point

Illustrative Example

Data Point: Constitutional reforms of Julius Caesar..

Method	Top-5 predictions
DEXA	Acta Senatus Centuria Roman Law Interrex Byzantine Senate
NGAME	Julius Caeser Assassination of Julius Caesar Caesarism Caesarism Constitution of the Roman Republic Caesar's civil war

Theoretical Results: Provable accurate training and crisp generalization bounds

Provable Accurate Training

Lemma: Consider a linear encoder parametrized by \boldsymbol{E} & DEXA with auxiliary params \boldsymbol{A} , the gradient norms at optimal value \boldsymbol{E}^* :

$$||\Delta_{E} \mathcal{L}(E^{*})||_{2} \leq 2||E_{*}||_{2}^{2} \sqrt{\frac{1}{L} \sum_{l} ||\Delta_{l}||_{2}^{2}}$$

$$\left| |\Delta_E \mathcal{L}(\boldsymbol{E}^*, \boldsymbol{A})| \right|_2 \le 4 \|\boldsymbol{E}_*\|_2^2 \sqrt{\frac{1}{L} \sum_{k} \sigma_k^2}$$

where, Δ_l is semantic gap for label l, and σ_k^2 is intra-cluster variance in semantic gap

- DEXA offers smaller encoder gradient, indicating a more faithful recovery of true encoder parameters, if $\sigma_k^2 \ll \sum_{l \in C_k} \left| |\Delta_l| \right|_2^2$
- Even if the individual Δ_l are large in a cluster, DEXA offers faithful encoder recovery so long that semantic gaps are similar to each other

Generalization Bounds

Theorem: Suppose DEXA is used with an encoder parameters θ and auxiliary parameters A, then with probability $1-\delta$, we have

$$\ell(\boldsymbol{\theta}, \boldsymbol{A}) \leq \hat{\ell}_N(\boldsymbol{\theta}, \boldsymbol{A}) + \epsilon(N) + \sqrt{\frac{\ln \frac{1}{\delta}}{N}} + \frac{\Delta \ln N}{\sqrt{N}}$$

where, $\Delta = \mathcal{O}(\ln(DK))$ apart from numerical constants independent of L

- $\epsilon(N)$ captures the dependence of the excess risk on the encoder parameter characteristics
- Independent of L in favour of $O(\ln(DK))$

Results: Significant gains in offline evaluation; Readily incorporate with existing architectures

